Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(5): 7227-7245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157180

RESUMO

Characterizing uranium (U) mine water is necessary to understand and design an effective bioremediation strategy. In this study, water samples from two former U-mines in East Germany were analysed. The U and sulphate (SO42-) concentrations of Schlema-Alberoda mine water (U: 1 mg/L; SO42-: 335 mg/L) were 2 and 3 order of magnitude higher than those of the Pöhla sample (U: 0.01 mg/L; SO42-: 0.5 mg/L). U and SO42- seemed to influence the microbial diversity of the two water samples. Microbial diversity analysis identified U(VI)-reducing bacteria (e.g. Desulfurivibrio) and wood-degrading fungi (e.g. Cadophora) providing as electron donors for the growth of U-reducers. U-bioreduction experiments were performed to screen electron donors (glycerol, vanillic acid, and gluconic acid) for Schlema-Alberoda U-mine water bioremediation purpose. Thermodynamic speciation calculations show that under experimental conditions, U(VI) is not coordinated to the amended electron donors. Glycerol was the best-studied electron donor as it effectively removed 99% of soluble U, 95% of Fe, and 58% of SO42- from the mine water, probably by biostimulation of indigenous microbes. Vanillic acid removed 90% of U, and no U removal occurred using gluconic acid.


Assuntos
Gluconatos , Urânio , Urânio/análise , Água/análise , Biodegradação Ambiental , Glicerol , Ácido Vanílico , Oxirredução
2.
NPJ Biofilms Microbiomes ; 9(1): 41, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349512

RESUMO

Biofilm formation is a common adaptation for microbes in energy-limited conditions such as those prevalent in the vast deep terrestrial biosphere. However, due to the low biomass and the inaccessible nature of subsurface groundwaters, the microbial populations and genes involved in its formation are understudied. Here, a flow-cell system was designed to investigate biofilm formation under in situ conditions in two groundwaters of contrasting age and geochemistry at the Äspö Hard Rock Laboratory, Sweden. Metatranscriptomes showed Thiobacillus, Sideroxydans, and Desulforegula to be abundant and together accounted for 31% of the transcripts in the biofilm communities. Differential expression analysis highlighted Thiobacillus to have a principal role in biofilm formation in these oligotrophic groundwaters by being involved in relevant processes such as the formation of extracellular matrix, quorum sensing, and cell motility. The findings revealed an active biofilm community with sulfur cycling as a prominent mode of energy conservation in the deep biosphere.


Assuntos
Água Subterrânea , Thiobacillus , Biofilmes , Suécia
3.
Nat Commun ; 12(1): 4253, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253732

RESUMO

While oligotrophic deep groundwaters host active microbes attuned to the low-end of the bioenergetics spectrum, the ecological constraints on microbial niches in these ecosystems and their consequences for microbiome convergence are unknown. Here, we provide a genome-resolved, integrated omics analysis comparing archaeal and bacterial communities in disconnected fracture fluids of the Fennoscandian Shield in Europe. Leveraging a dataset that combines metagenomes, single cell genomes, and metatranscriptomes, we show that groundwaters flowing in similar lithologies offer fixed niches that are occupied by a common core microbiome. Functional expression analysis highlights that these deep groundwater ecosystems foster diverse, yet cooperative communities adapted to this setting. We suggest that these communities stimulate cooperation by expression of functions related to ecological traits, such as aggregate or biofilm formation, while alleviating the burden on microorganisms producing compounds or functions that provide a collective benefit by facilitating reciprocal promiscuous metabolic partnerships with other members of the community. We hypothesize that an episodic lifestyle enabled by reversible bacteriostatic functions ensures the subsistence of the oligotrophic deep groundwater microbiome.


Assuntos
Metabolismo Energético , Água Subterrânea/microbiologia , Microbiota , Biodiversidade , Bases de Dados Genéticas , Regulação da Expressão Gênica , Ponto Isoelétrico , Metagenoma , Microbiota/genética , Filogenia , Transcrição Gênica , Transcriptoma/genética
4.
Commun Biol ; 4(1): 307, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686191

RESUMO

The deep biosphere contains members from all three domains of life along with viruses. Here we investigate the deep terrestrial virosphere by sequencing community nucleic acids from three groundwaters of contrasting chemistries, origins, and ages. These viromes constitute a highly unique community compared to other environmental viromes and sequenced viral isolates. Viral host prediction suggests that many of the viruses are associated with Firmicutes and Patescibacteria, a superphylum lacking previously described active viruses. RNA transcript-based activity implies viral predation in the shallower marine water-fed groundwater, while the deeper and more oligotrophic waters appear to be in 'metabolic standby'. Viral encoded antibiotic production and resistance systems suggest competition and antagonistic interactions. The data demonstrate a viral community with a wide range of predicted hosts that mediates nutrient recycling to support a higher microbial turnover than previously anticipated. This suggests the presence of 'kill-the-winner' oscillations creating slow motion 'boom and burst' cycles.


Assuntos
Água Subterrânea/virologia , Viroma , Replicação Viral , Vírus/crescimento & desenvolvimento , Firmicutes/crescimento & desenvolvimento , Firmicutes/virologia , Água Subterrânea/microbiologia , Interações Hospedeiro-Patógeno , Metagenômica , Densidade Demográfica , Fatores de Tempo , Vírus/genética , Vírus/metabolismo , Microbiologia da Água
5.
Microb Biotechnol ; 14(3): 810-828, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33615734

RESUMO

Radionuclides (RNs) generated by nuclear and civil industries are released in natural ecosystems and may have a hazardous impact on human health and the environment. RN-polluted environments harbour different microbial species that become highly tolerant of these elements through mechanisms including biosorption, biotransformation, biomineralization and intracellular accumulation. Such microbial-RN interaction processes hold biotechnological potential for the design of bioremediation strategies to deal with several contamination problems. This paper, with its multidisciplinary approach, provides a state-of-the-art review of most research endeavours aimed to elucidate how microbes deal with radionuclides and how they tolerate ionizing radiations. In addition, the most recent findings related to new biotechnological applications of microbes in the bioremediation of radionuclides and in the long-term disposal of nuclear wastes are described and discussed.


Assuntos
Ecossistema , Radioisótopos , Biodegradação Ambiental , Biotecnologia , Humanos , Interações Microbianas
6.
J Hazard Mater ; 408: 124600, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33339698

RESUMO

Compacted bentonites are one of the best sealing and backfilling clays considered for use in Deep Geological Repositories of radioactive wastes. However, an in-depth understanding of their behavior after placement in the repository is required, including if the activity of indigenous microorganisms affects safety conditions. Here we provide an optimized phenol:chloroform based protocol that facilitates higher DNA-yields when other methods failed. To demonstrate the efficiency of this method, DNA was extracted from acetate-treated bentonites compacted at 1.5 and 1.7 g/cm3 densities after 24 months anoxic incubation. Among the 16S rRNA gene sequences identified, those most similar to taxa mediating biogeochemical sulfur cycling included sulfur oxidizing (e.g., Thiobacillus, and Sulfurimonas) and sulfate reducing (e.g., Desulfuromonas and Desulfosporosinus) bacteria. In addition, iron-cycling populations included iron oxidizing (e.g., Thiobacillus and Rhodobacter) plus reducing taxa (e.g., Geobacillus). Genera described for their capacity to utilize acetate as a carbon source were also detected such as Delftia and Stenotrophomonas. Lastly, microscopic analyses revealed pores and cracks that could host nanobacteria or spores. This study highlights the potential role of microbial driven biogeochemical processes in compacted bentonites and the effect of high compaction on microbial diversity in Deep Geological Repositories.


Assuntos
Resíduos Radioativos , Bactérias/genética , Bentonita , Argila , RNA Ribossômico 16S/genética , Resíduos Radioativos/análise
7.
Environ Sci Technol ; 54(23): 15180-15190, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185105

RESUMO

Microbial communities occurring in reference materials for artificial barriers (e.g., bentonites) in future deep geological repositories of radioactive waste can influence the migration behavior of radionuclides such as curium (CmIII). This study investigates the molecular interactions between CmIII and its inactive analogue europium (EuIII) with the indigenous bentonite bacterium Stenotrophomonas bentonitica at environmentally relevant concentrations. Potentiometric studies showed a remarkably high concentration of phosphates at the bacterial cell wall compared to other bacteria, revealing the great potential of S. bentonitica for metal binding. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the role of phosphates and carboxylate groups from the cell envelope in the bioassociation of EuIII. Additionally, time-resolved laser-induced fluorescence spectroscopy (TRLFS) identified phosphoryl and carboxyl groups from bacterial envelopes, among other released complexing agents, to be involved in the EuIII and CmIII coordination. The ability of this bacterium to form a biofilm at the surface of bentonites allows them to immobilize trivalent lanthanide and actinides in the environment.


Assuntos
Resíduos Radioativos , Cúrio , Európio , Stenotrophomonas
8.
Sci Data ; 6(1): 207, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619684

RESUMO

Natural sulfide rich deposits are common in coastal areas worldwide, including along the Baltic Sea coast. When artificial drainage exposes these deposits to atmospheric oxygen, iron sulfide minerals in the soils are rapidly oxidized. This process turns the potential acid sulfate soils into actual acid sulfate soils and mobilizes large quantities of acidity and leachable toxic metals that cause severe environmental problems. It is known that acidophilic microorganisms living in acid sulfate soils catalyze iron sulfide mineral oxidation. However, only a few studies regarding these communities have been published. In this study, we sampled the oxidized actual acid sulfate soil, the transition zone where oxidation is actively taking place, and the deepest un-oxidized potential acid sulfate soil. Nucleic acids were extracted and 16S rRNA gene amplicons, metagenomes, and metatranscriptomes generated to gain a detailed insight into the communities and their activities. The project will be of great use to microbiologists, environmental biologists, geochemists, and geologists as there is hydrological and geochemical monitoring from the site stretching back for many years.


Assuntos
Metagenoma , Minerais , RNA Ribossômico 16S/genética , Microbiologia do Solo , Sulfatos , Finlândia , Solo/química
9.
mBio ; 10(4)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409677

RESUMO

Life in water-filled bedrock fissures in the continental deep biosphere is broadly constrained by energy and nutrient availability. Although these communities are alive, robust studies comparing active populations and metabolic processes across deep aquifers are lacking. This study analyzed three oligotrophic Fennoscandian Shield groundwaters, two "modern marine" waters that are replenished with organic carbon from the Baltic Sea and are likely less than 20 years old (171.3 and 415.4 m below sea level) and an extremely oligotrophic "thoroughly mixed" water (448.8 m below sea level) of unknown age that is composed of very old saline and marine waters. Cells were captured either using a sampling device that rapidly fixed RNA under in situ conditions or by filtering flowing groundwater over an extended period before fixation. Comparison of metatranscriptomes between the methods showed statistically similar transcript profiles for the respective water types, and they were analyzed as biological replicates. Study of the small subunit (SSU) rRNA confirmed active populations from all three domains of life, with many potentially novel unclassified populations present. Statistically supported differences between communities included heterotrophic sulfate-reducing bacteria in the modern marine water at 171.3 m below sea level that has a higher organic carbon content than do largely autotrophic populations in the H2- and CO2-fed thoroughly mixed water. While this modern marine water had signatures of methanogenesis, syntrophic populations were predominantly in the thoroughly mixed water. The study provides a first statistical evaluation of differences in the active microbial communities in groundwaters differentially fed by organic carbon or "geogases."IMPORTANCE Despite being separated from the photosynthesis-driven surface by both distance and time, the deep biosphere is an important driver for the earth's carbon and energy cycles. However, due to the difficulties in gaining access and low cell numbers, robust statistical omics studies have not been carried out, and this limits the conclusions that can be drawn. This study benchmarks the use of two separate sampling systems and demonstrates that they provide statistically similar RNA transcript profiles, importantly validating several previously published studies. The generated data are analyzed to identify statistically valid differences in active microbial community members and metabolic processes. The results highlight contrasting taxa and growth strategies in the modern marine waters that are influenced by recent infiltration of Baltic Sea water versus the hydrogen- and carbon dioxide-fed, extremely oligotrophic, thoroughly mixed water.


Assuntos
Água Subterrânea/microbiologia , Microbiota/genética , Microbiologia da Água , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Eucariotos/metabolismo , Água Subterrânea/química , Gás Natural/análise , Oceanos e Mares , Compostos Orgânicos/análise , Filogenia , RNA Ribossômico/genética , Água do Mar/química , Água do Mar/microbiologia , Análise de Sequência de RNA , Transcriptoma
10.
Sci Total Environ ; 692: 219-232, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31349163

RESUMO

The multi-barrier deep geological repository system is currently considered as one of the safest option for the disposal of high-level radioactive wastes. Indigenous microorganisms of bentonites may affect the structure and stability of these clays through Fe-containing minerals biotransformation and radionuclides mobilization. The present work aimed to investigate the behavior of bentonite and its bacterial community in the case of a uranium leakage from the waste containers. Hence, bentonite microcosms were amended with uranyl nitrate (U) and glycerol-2-phosphate (G2P) and incubated aerobically for 6 months. Next generation 16S rRNA gene sequencing revealed that the bacterial populations of all treated microcosms were dominated by Actinobacteria and Proteobacteria, accounting for >50% of the community. Additionally, G2P and nitrate had a remarkable effect on the bacterial diversity of bentonites by the enrichment of bacteria involved in the nitrogen and carbon biogeochemical cycles (e.g. Azotobacter). A significant presence of sulfate-reducing bacteria such as Desulfonauticus and Desulfomicrobium were detected in the U-treated microcosms. The actinobacteria Amycolatopsis was enriched in G2P­uranium amended bentonites. High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy analyses showed the capacity of Amycolatopsis and a bentonite consortium formed by Bradyrhizobium-Rhizobium and Pseudomonas to precipitate U as U phosphate mineral phases, probably due to the phosphatase activity. The different amendments did not affect the mineralogy of the bentonite pointing to a high structural stability. These results would help to predict the impact of microbial processes on the biogeochemical cycles of elements (N and U) within the bentonite barrier under repository relevant conditions and to determine the changes in the microbial community induced by a uranium release.


Assuntos
Bactérias/metabolismo , Bentonita/análise , Glicerofosfatos/metabolismo , Microbiota/efeitos dos fármacos , Resíduos Radioativos/análise , Urânio/metabolismo , Bactérias/classificação
11.
J Hazard Mater ; 370: 156-163, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940356

RESUMO

This work describes the molecular characterization of the interaction mechanism of a bentonite yeast isolate, Rhodotorula mucilaginosa BII-R8, with curium(III) as representative of trivalent actinides and europium(III) used as inactive analogue of Cm(III). A multidisciplinary approach combining spectroscopy, microscopy and flow cytometry was applied. Time-Resolved Laser Induced Fluorescence Spectroscopy (TRLFS) analyses demonstrated that the biosorption of Cm(III) is a reversible and pH-dependent process for R. mucilaginosa BII-R8 cells. Two Cm(III)-R. mucilaginosa BII-R8 species were identified having emission maxima at 599.6 and 601.5 nm. They were assigned to Cm(III) species bound to phosphoryl and carboxyl sites from the yeast cell, respectively. Phosphate groups were involved in the sorption of this actinide, as demonstrated by the Eu(III)-phosphate accumulates at the cell membrane shown by microscopy. In addition, cell viability and metabolic potential were assessed to determine the negative effect of Eu(III) in the yeast cells. The results obtained in this work showed that the interaction of Cm(III) with the yeast R. mucilaginosa BII-R8 cells at circumneutral and alkaline pH values will make this radionuclide more mobile to reach the biosphere. Therefore, geochemical conditions in the bentonite engineering barrier need to be carefully adjusted for the safe deep geological disposal of radioactive wastes.


Assuntos
Cúrio/química , Poluentes Radioativos/química , Rhodotorula/química , Adsorção , Bentonita , Európio/química , Concentração de Íons de Hidrogênio , Resíduos Radioativos
12.
Microb Ecol ; 78(2): 494-505, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30593603

RESUMO

The Arava Valley in is a rock desert within the Great African Rift valley. Soil from this area is covered with a salt crust. Here, we report microbial diversity from arid, naturally saline samples collected near Ein Yahav from the Arava Valley by culture-independent as well as culture-dependent analysis. High-throughput sequencing of the hypervariable region V4 of the 16S rRNA gene revealed that the microbial community consists of halophiles from the domain Bacteria as well as Archaea. Bacterial diversity was mainly represented by the genus Salinimicrobium of the order Flavobacteriales within the phylum Bacteroidetes, from the gammaproteobacterial orders Alteromonadales and Oceanospirillales as well as representatives from the order Bacillales of the phylum Firmicutes. Archaeal diversity was dominated by euryarchaeal Halobacteria from the orders Halobacteriales, Haloferacales, and Natrialbales. But more than 40% of the sequences affiliated with Archaea were assigned to unknown or unclassified archaea. Even if taxonomic resolution of the 16S rRNA gene V4 region for Archaea is limited, this study indicates the need of further and more detailed studies of Archaea. By using culture-dependent analysis, bacteria of the order Bacillales as well as archaea from all three halobacterial orders Halobacteriales, Haloferacales, and Natrialbales including potentially novel species from the genera Halorubrum and Haloparvum were isolated.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Solo/química , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , DNA Arqueal/genética , DNA Bacteriano/genética , Clima Desértico , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Cloreto de Sódio/análise , Cloreto de Sódio/metabolismo , Microbiologia do Solo
13.
Front Microbiol ; 9: 2880, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538690

RESUMO

The continental deep biosphere is suggested to contain a substantial fraction of the earth's total biomass and microorganisms inhabiting this environment likely have a substantial impact on biogeochemical cycles. However, the deep microbial community is still largely unknown and can be influenced by parameters such as temperature, pressure, water residence times, and chemistry of the waters. In this study, 21 boreholes representing a range of deep continental groundwaters from the Äspö Hard Rock Laboratory were subjected to high-throughput 16S rRNA gene sequencing to characterize how the different water types influence the microbial communities. Geochemical parameters showed the stability of the waters and allowed their classification into three groups. These were (i) waters influenced by infiltration from the Baltic Sea with a "modern marine (MM)" signature, (ii) a "thoroughly mixed (TM)" water containing groundwaters of several origins, and (iii) deep "old saline (OS)" waters. Decreasing microbial cell numbers positively correlated with depth. In addition, there was a stronger positive correlation between increased cell numbers and dissolved organic carbon for the MM compared to the OS waters. This supported that the MM waters depend on organic carbon infiltration from the Baltic Sea while the ancient saline waters were fed by "geogases" such as carbon dioxide and hydrogen. The 16S rRNA gene relative abundance of the studied groundwaters revealed different microbial community compositions. Interestingly, the TM water showed the highest dissimilarity compared to the other two water types, potentially due to the several contrasting water types contributing to this groundwater. The main identified microbial phyla in the groundwaters were Gammaproteobacteria, unclassified sequences, Campylobacterota (formerly Epsilonproteobacteria), Patescibacteria, Deltaproteobacteria, and Alphaproteobacteria. Many of these taxa are suggested to mediate ferric iron and nitrate reduction, especially in the MM waters. This indicated that nitrate reduction may be a neglected but important process in the deep continental biosphere. In addition to the high number of unclassified sequences, almost 50% of the identified phyla were archaeal or bacterial candidate phyla. The percentage of unknown and candidate phyla increased with depth, pointing to the importance and necessity of further studies to characterize deep biosphere microbial populations.

14.
mBio ; 9(6)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459191

RESUMO

The continental subsurface is suggested to contain a significant part of the earth's total biomass. However, due to the difficulty of sampling, the deep subsurface is still one of the least understood ecosystems. Therefore, microorganisms inhabiting this environment might profoundly influence the global nutrient and energy cycles. In this study, in situ fixed RNA transcripts from two deep continental groundwaters from the Äspö Hard Rock Laboratory (a Baltic Sea-influenced water with a residence time of <20 years, defined as "modern marine," and an "old saline" groundwater with a residence time of thousands of years) were subjected to metatranscriptome sequencing. Although small subunit (SSU) rRNA gene and mRNA transcripts aligned to all three domains of life, supporting activity within these community subsets, the data also suggested that the groundwaters were dominated by bacteria. Many of the SSU rRNA transcripts grouped within newly described candidate phyla or could not be mapped to known branches on the tree of life, suggesting that a large portion of the active biota in the deep biosphere remains unexplored. Despite the extremely oligotrophic conditions, mRNA transcripts revealed a diverse range of metabolic strategies that were carried out by multiple taxa in the modern marine water that is fed by organic carbon from the surface. In contrast, the carbon dioxide- and hydrogen-fed old saline water with a residence time of thousands of years predominantly showed the potential to carry out translation. This suggested these cells were active, but waiting until an energy source episodically becomes available.IMPORTANCE A newly designed sampling apparatus was used to fix RNA under in situ conditions in the deep continental biosphere and benchmarks a strategy for deep biosphere metatranscriptomic sequencing. This apparatus enabled the identification of active community members and the processes they carry out in this extremely oligotrophic environment. This work presents for the first time evidence of eukaryotic, archaeal, and bacterial activity in two deep subsurface crystalline rock groundwaters from the Äspö Hard Rock Laboratory with different depths and geochemical characteristics. The findings highlight differences between organic carbon-fed shallow communities and carbon dioxide- and hydrogen-fed old saline waters. In addition, the data reveal a large portion of uncharacterized microorganisms, as well as the important role of candidate phyla in the deep biosphere, but also the disparity in microbial diversity when using standard microbial 16S rRNA gene amplification versus the large unknown portion of the community identified with unbiased metatranscriptomes.


Assuntos
Ambientes Extremos , Água Subterrânea/microbiologia , Microbiota/genética , Transcriptoma , Microbiologia da Água , Archaea/genética , Bactérias/genética , Biodiversidade , Perfilação da Expressão Gênica , Genes de RNAr , Filogenia , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Dióxido de Silício
15.
Front Microbiol ; 9: 2308, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323799

RESUMO

Thiocyanate is a toxic compound produced by the mining and metallurgy industries that needs to be remediated prior to its release into the environment. If the industry is situated at high altitudes or near the poles, economic factors require a low temperature treatment process. Microbial fuel cells are a developing technology that have the benefits of both removing such toxic compounds while recovering electrical energy. In this study, simultaneous thiocyanate degradation and electrical current generation was demonstrated and it was suggested that extracellular electron transfer to the anode occurred. Investigation of the microbial community by 16S rRNA metatranscriptome reads supported that the anode attached and planktonic anolyte consortia were dominated by a Thiobacillus-like population. Metatranscriptomic sequencing also suggested thiocyanate degradation primarily occurred via the 'cyanate' degradation pathway. The generated sulfide was metabolized via sulfite and ultimately to sulfate mediated by reverse dissimilatory sulfite reductase, APS reductase, and sulfate adenylyltransferase and the released electrons were potentially transferred to the anode via soluble electron shuttles. Finally, the ammonium from thiocyanate degradation was assimilated to glutamate as nitrogen source and carbon dioxide was fixed as carbon source. This study is one of the first to demonstrate a low temperature inorganic sulfur utilizing microbial fuel cell and the first to provide evidence for pathways of thiocyanate degradation coupled to electron transfer.

16.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931252

RESUMO

The deep biosphere is the largest 'bioreactor' on earth, and microbes inhabiting this biome profoundly influence global nutrient and energy cycles. An important question for deep biosphere microbiology is whether or not specific populations are viable. To address this, we used quantitative PCR and high throughput 16S rRNA gene sequencing of total and viable cells (i.e. with an intact cellular membrane) from three groundwaters with different ages and chemical constituents. There were no statistically significant differences in 16S rRNA gene abundances and microbial diversity between total and viable communities. This suggests that populations were adapted to prevailing oligotrophic conditions and that non-viable cells are rapidly degraded and recycled into new biomass. With higher concentrations of organic carbon, the modern marine and undefined mixed waters hosted a community with a larger range of predicted growth strategies than the ultra-oligotrophic old saline water. These strategies included fermentative and potentially symbiotic lifestyles by candidate phyla that typically have streamlined genomes. In contrast, the old saline waters had more 16S rRNA gene sequences in previously cultured lineages able to oxidize hydrogen and fix carbon dioxide. This matches the paradigm of a hydrogen and carbon dioxide-fed chemolithoautotrophic deep biosphere.


Assuntos
Bactérias/metabolismo , Crescimento Quimioautotrófico/fisiologia , Água Subterrânea/microbiologia , Nutrientes/metabolismo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Biomassa , Ecossistema , Filogenia , RNA Ribossômico 16S/genética , Reciclagem
17.
Chemosphere ; 199: 351-360, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29453061

RESUMO

This study presents the effect of aqueous uranium speciation (U-hydroxides and U-hydroxo-carbonates) on the interaction of this radionuclide with the cells of the yeast Rhodotorula mucigilanosa BII-R8. This strain was isolated from Spanish bentonites considered as reference materials for the engineered barrier components of the future deep geological repository of radioactive waste. X-ray absorption and infrared spectroscopy showed that the aqueous uranium speciation has no effect on the uranium binding process by this yeast strain. The cells bind mobile uranium species (U-hydroxides and U-hydroxo-carbonates) from solution via a time-dependent process initiated by the adsorption of uranium species to carboxyl groups. This leads to the subsequent involvement of organic phosphate groups forming uranium complexes with a local coordination similar to that of the uranyl mineral phase meta-autunite. Scanning transmission electron microscopy with high angle annular dark field analysis showed uranium accumulations at the cell surface associated with phosphorus containing ligands. Moreover, the effect of uranium mobile species on the cell viability and metabolic activity was examined by means of flow cytometry techniques, revealing that the cell metabolism is more affected by higher concentrations of uranium than the cell viability. The results obtained in this work provide new insights on the interaction of uranium with bentonite natural yeast from genus Rhodotorula under deep geological repository relevant conditions.


Assuntos
Rhodotorula/metabolismo , Urânio/química , Adsorção , Bentonita/química , Biodegradação Ambiental , Carbonatos/química , Fósforo/metabolismo , Poluentes Radioativos/isolamento & purificação , Urânio/isolamento & purificação , Urânio/metabolismo , Poluentes Químicos da Água/isolamento & purificação
18.
Int J Syst Evol Microbiol ; 67(8): 2779-2786, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28820086

RESUMO

A Gram-stain negative, rod-shaped, aerobic bacterial strain, BII-R7T, was isolated during a study targeting the culture-dependent microbial diversity occurring in bentonite formations from southern Spain. Comparative 16S rRNA gene sequence analysis showed that BII-R7T represented a member of the genus Stenotrophomonas (class Gammaproteobacteria), and was related most closely to Stenotrophomonas rhizophila e-p10T (99.2 % sequence similarity), followed by Stenotrophomonas pavanii ICB 89T (98.5 %), Stenotrophomonas maltophilia IAM 12423T, Stenotrophomonas chelatiphaga LPM-5T and Stenotrophomonas tumulicola T5916-2-1bT (all 98.3 %). Pairwise sequence similarities to all other type strains of species of the genus Stenotrophomonas were below 98 %. Genome-based calculations (orthologous average nucleotide identity, original average nucleotide identity, genome-to-genome distance and DNA G+C percentage) indicated clearly that the isolate represents a novel species within this genus. Different phenotypic analyses, such as the detection of a quinone system composed of the major compound ubiquinone Q-8 and a fatty acid profile with iso-C15 : 0 and anteiso-C15 : 0 as major components, supported this finding at the same time as contributing to a comprehensive characterization of BII-R7T. Based on this polyphasic approach comprising phenotypic and genotypic/molecular characterization, BII-R7T can be differentiated clearly from its phylogenetic neighbours, establishing a novel species for which the name Stenotrophomonas bentonitica sp. nov. is proposed with BII-R7T as the type strain (=LMG 29893T=CECT 9180T=DSM 103927T).


Assuntos
Bentonita , Stenotrophomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação , Ubiquinona/química
19.
Biodegradation ; 28(4): 287-301, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28577026

RESUMO

Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH < 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium, Thiobacillus, and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.


Assuntos
Processos Autotróficos , Temperatura Baixa , Desnitrificação , Elétrons , Tiocianatos/farmacologia , Tiossulfatos/farmacologia , Aerobiose , Anaerobiose , Processos Autotróficos/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Reatores Biológicos/microbiologia , Desnitrificação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Filogenia
20.
J Environ Radioact ; 166(Pt 1): 130-141, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27068793

RESUMO

The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Urânio/metabolismo , Bactérias/classificação , Bactérias/genética , Poluentes Radioativos/metabolismo , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...